Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.553
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(16): e2315123121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38602915

RESUMO

Pulmonary arterial hypertension (PAH) is characterized by stenosis and occlusions of small pulmonary arteries, leading to elevated pulmonary arterial pressure and right heart failure. Although accumulating evidence shows the importance of interleukin (IL)-6 in the pathogenesis of PAH, the target cells of IL-6 are poorly understood. Using mice harboring the floxed allele of gp130, a subunit of the IL-6 receptor, we found substantial Cre recombination in all hematopoietic cell lineages from the primitive hematopoietic stem cell level in SM22α-Cre mice. We also revealed that a CD4+ cell-specific gp130 deletion ameliorated the phenotype of hypoxia-induced pulmonary hypertension in mice. Disruption of IL-6 signaling via deletion of gp130 in CD4+ T cells inhibited phosphorylation of signal transducer and activator of transcription 3 (STAT3) and suppressed the hypoxia-induced increase in T helper 17 cells. To further examine the role of IL-6/gp130 signaling in more severe PH models, we developed Il6 knockout (KO) rats using the CRISPR/Cas9 system and showed that IL-6 deficiency could improve the pathophysiology in hypoxia-, monocrotaline-, and Sugen5416/hypoxia (SuHx)-induced rat PH models. Phosphorylation of STAT3 in CD4+ cells was also observed around the vascular lesions in the lungs of the SuHx rat model, but not in Il6 KO rats. Blockade of IL-6 signaling had an additive effect on conventional PAH therapeutics, such as endothelin receptor antagonist (macitentan) and soluble guanylyl cyclase stimulator (BAY41-2272). These findings suggest that IL-6/gp130 signaling in CD4+ cells plays a critical role in the pathogenesis of PAH.


Assuntos
Hipertensão Pulmonar , Interleucina-6 , Camundongos , Ratos , Animais , Interleucina-6/genética , Interleucina-6/farmacologia , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/patologia , Receptor gp130 de Citocina/genética , Linfócitos T CD4-Positivos/patologia , Hipóxia/patologia , Artéria Pulmonar/patologia
2.
Mol Biol Rep ; 51(1): 568, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656400

RESUMO

BACKGROUND: Tumor embolism is a very rare primary manifestation of cancers and the diagnosis is challenging, especially if located in the pulmonary arteries, where it can mimic nonmalignant pulmonary embolism. Intimal sarcoma is one of the least commonly reported primary tumors of vessels with only a few cases reported worldwide. A typical location of this malignancy is the pulmonary artery. Herein, we present a case report of an intimal sarcoma with primary manifestation in the pulmonary arteries. A 53-year-old male initially presented with dyspnea. On imaging, a pulmonary artery embolism was detected and was followed by thrombectomy of the right ventricular outflow tract, main pulmonary artery trunk, and right pulmonary artery after ineffective lysis therapy. Complementary imaging of the chest and abdomen including a PET-CT scan demonstrated no evidence of a primary tumor. Subsequent pathology assessment suggested an intimal sarcoma further confirmed by DNA methylation based molecular analysis. We initiated adjuvant chemotherapy with doxorubicin. Four months after the completion of adjuvant therapy a follow-up scan revealed a local recurrence without distant metastases. DISCUSSION: Primary pulmonary artery intimal sarcoma (PAS) is an exceedingly rare entity and pathological diagnosis remains challenging. Therefore, the detection of entity-specific molecular alterations is a supporting argument in the diagnostic spectrum. Complete surgical resection is the prognostically most important treatment for intimal cardiac sarcomas. Despite adjuvant chemotherapy, the prognosis of cardiac sarcomas remains very poor. This case of a PAS highlights the difficulty in establishing a diagnosis and the aggressive natural course of the disease. CONCLUSION: In case of atypical presentation of a pulmonary embolism, a tumor originating from the great vessels should be considered. Molecular pathology techniques support in establishing a reliable diagnosis.


Assuntos
Artéria Pulmonar , Sarcoma , Trombose , Humanos , Masculino , Pessoa de Meia-Idade , Artéria Pulmonar/patologia , Sarcoma/diagnóstico , Sarcoma/patologia , Túnica Íntima/patologia , Neoplasias Vasculares/diagnóstico , Neoplasias Vasculares/patologia , Embolia Pulmonar/diagnóstico , Diagnóstico Diferencial
3.
Eur J Pharmacol ; 970: 176483, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38479721

RESUMO

Stromal derived factor 1 (SDF1) has been shown to be involved in the pathogenesis of pulmonary artery hypertension (PAH). However, the detailed molecular mechanisms remain unclear. To address this, we utilized primary cultured rat pulmonary artery smooth muscle cells (PASMCs) and monocrotaline (MCT)-induced PAH rat models to investigate the mechanisms of SDF1 driving PASMCs proliferation and pulmonary arterial remodeling. SDF1 increased runt-related transcription factor 2 (Runx2) acetylation by Calmodulin (CaM)-dependent protein kinase II (CaMKII)-dependent HDAC4 cytoplasmic translocation, elevation of Runx2 acetylation conferred its resistance to proteasome-mediated degradation. The accumulation of Runx2 further upregulated osteopontin (OPN) expression, finally leading to PASMCs proliferation. Blocking SDF1, suppression of CaMKII, inhibition the nuclear export of HDAC4 or silencing Runx2 attenuated pulmonary arterial remodeling and prevented PAH development in MCT-induced PAH rat models. Our study provides novel sights for SDF1 induction of PASMCs proliferation and suggests that targeting SDF1/CaMKII/HDAC4/Runx2 axis has potential value in the management of PAH.


Assuntos
Hipertensão Arterial Pulmonar , Ratos , Animais , Hipertensão Arterial Pulmonar/patologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Remodelação Vascular/fisiologia , Proliferação de Células , Artéria Pulmonar/patologia , Hipertensão Pulmonar Primária Familiar/patologia , Miócitos de Músculo Liso , Monocrotalina/efeitos adversos , Modelos Animais de Doenças , Histona Desacetilases/metabolismo
4.
Rev Mal Respir ; 41(4): 265-268, 2024 Apr.
Artigo em Francês | MEDLINE | ID: mdl-38461086

RESUMO

Pulmonary hypertension (PH) is the main pathology in lung circulation, characterized by increased pressure in pulmonary arteries and ultimately resulting in right heart failure with potentially fatal outcomes. Given the current lack of available curative treatments, it is of paramount importance to identify novel therapeutic targets. Due to its involvement in pulmonary arterial remodeling, hyperreactivity, and inflammation, our explorations have focused on the nerve growth factor (NGF), offering promising avenues for innovative therapeutic approaches.


Assuntos
Hipertensão Pulmonar , Humanos , Hipertensão Pulmonar/terapia , Hipertensão Pulmonar/tratamento farmacológico , Fator de Crescimento Neural , Circulação Pulmonar , Artéria Pulmonar/patologia
5.
Arterioscler Thromb Vasc Biol ; 44(4): 794-806, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38328933

RESUMO

Chronic thromboembolic pulmonary hypertension (CTEPH) is a rare form of pulmonary hypertension characterized by the presence of organized thrombi that obstruct pulmonary arteries, ultimately leading to right heart failure and death. Among others, impaired angiogenesis and inflammatory thrombosis have been shown to contribute to the progression of CTEPH. In this review, we summarize the 2-faced nature of angiogenesis in both thrombus formation and resolution in the context of CTEPH and highlight the dual role of angiogenesis and neovascularization in resolving venous thrombi. Furthermore, we discuss relevant in vitro and in vivo models that support the benefits or drawbacks of angiogenesis in CTEPH progression. We discuss the key pathways involved in modulating angiogenesis, particularly the underexplored role of TGFß (transforming growth factor-beta) signaling in driving fibrosis as an integral element of CTEPH pathogenesis. We finally explore innovative treatment strategies that target angiogenic pathways. These strategies have the potential to pioneer preventive, inventive, or alternative therapeutic options for patients with CTEPH who may not qualify for surgical interventions. Moreover, they could be used synergistically with established treatments such as pulmonary endarterectomy or balloon pulmonary angioplasty. In summary, this review emphasizes the crucial role of angiogenesis in the development of in fibrothrombotic tissue, a major pathological characteristic of CTEPH.


Assuntos
Hipertensão Pulmonar , Embolia Pulmonar , Trombose , Humanos , Hipertensão Pulmonar/etiologia , Embolia Pulmonar/terapia , 60489 , Artéria Pulmonar/patologia , Trombose/patologia , Doença Crônica , Endarterectomia/efeitos adversos
6.
Medicine (Baltimore) ; 103(8): e37194, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38394547

RESUMO

RATIONALE: Pulmonary artery sarcoma (PAS) is a rare malignant tumor primarily originating from the pulmonary artery's intima or subintima. Approximately one-third of cases are classified as undifferentiated type. Its clinical manifestations lack specificity, dyspnea is the main symptom but can also present with chest pain, cough, hemoptysis, and other discomforts, making it prone to misdiagnosis as pulmonary embolism (PE). PATIENT CONCERNS: A 50-year-old woman was admitted to the hospital with "dyspnea for more than 3 months, aggravated for 2 days," and computed tomography pulmonary angiography suggesting "bilateral multiple pulmonary embolisms." DIAGNOSES: The patient was initially misdiagnosed as PE, and was later definitively diagnosed as undifferentiated pleomorphic sarcoma of the pulmonary artery by pathologic biopsy. INTERVENTIONS AND OUTCOMES: The patient was initially treated with anticoagulant therapy, but her dyspnea was not relieved. After that, she underwent positron emission computed tomography (PET-CT) and other investigations, which suggested the possibility of PAS, and then she underwent pulmonary endarterectomy to remove the lesion, which relieved her symptoms and was advised to seek further medical attention from the Department of Oncology and Department of Radiotherapy. LESSONS: PAS can be easily misdiagnosed as PE. If a diagnosis of PE is made, but anticoagulation or even thrombolytic therapy proves ineffective, and there is no presence of PE causative factors such as deep vein thrombosis in the lower extremities, or D-dimer levels are not high, one should be cautious and consider the possibility of PAS.


Assuntos
Hipertensão Pulmonar , Neoplasias Pulmonares , Embolia Pulmonar , Sarcoma , Neoplasias de Tecidos Moles , Humanos , Feminino , Pessoa de Meia-Idade , Artéria Pulmonar/diagnóstico por imagem , Artéria Pulmonar/patologia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Hipertensão Pulmonar/complicações , Embolia Pulmonar/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias de Tecidos Moles/patologia , Dispneia/etiologia , Dispneia/patologia , Sarcoma/diagnóstico , Sarcoma/terapia , Sarcoma/complicações
7.
Biochem Pharmacol ; 222: 116093, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38408681

RESUMO

BACKGROUND: Hyperproliferation, inflammation, and mitochondrial abnormalities in pulmonary artery smooth muscle cells (PASMCs) underlie the pathological mechanisms of vascular remodeling in pulmonary arterial hypertension (PAH). Cytoplasmic mtDNA activates the cGAS-STING-NFκB pathway and secretes pro-inflammatory cytokines that may be involved in the pathogenesis of PAH. Calcitonin gene-related peptide (CGRP) acts as a vasodilator to regulate patterns of cellular energy metabolism and has vasodilatory and anti-inflammatory effects. METHODS: The role of the cGAS-STING-NFκB signaling pathway in PAH vascular remodeling and the regulation of CGRP in the cGAS-STING-NFκB signaling pathway were investigated by echocardiography, morphology, histology, enzyme immunoassay, and fluorometry. RESULTS: Monocrotaline (MCT) could promote right heart hypertrophy, pulmonary artery intima thickening, and inflammatory cell infiltration in rats. Cinnamaldehyde (CA)-induced CGRP release alleviates MCT-induced vascular remodeling in PAH. CGRP reduces PDGF-BB-induced proliferation, and migration, and downregulates smooth muscle cell phenotypic proteins. In vivo and in vitro experiments confirm that the mitochondria of PASMCs were damaged during PAH, and the superoxide and mtDNA produced by injured mitochondria activate the cGAS-STING-NFκB pathway to promote PAH process, while CGRP could play an anti-PAH role by protecting the mitochondria and inhibiting the cGAS-STING-NFκB pathway through PKA. CONCLUSION: This study identifies that CGRP attenuates cGAS-STING-NFκB axis-mediated vascular remodeling in PAH through PKA.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Animais , Ratos , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Proliferação de Células , Modelos Animais de Doenças , DNA Mitocondrial/metabolismo , Hipertensão Pulmonar/metabolismo , Monocrotalina/toxicidade , Monocrotalina/metabolismo , Miócitos de Músculo Liso , Nucleotidiltransferases/metabolismo , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/patologia , Artéria Pulmonar/patologia , Ratos Sprague-Dawley , Remodelação Vascular
8.
J Transl Med ; 22(1): 137, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317144

RESUMO

BACKGROUND: Pulmonary hypertension (PH) is a complex multifactorial vascular pathology characterized by an increased pulmonary arterial pressure, vasoconstriction, remodelling of the pulmonary vasculature, thrombosis in situ and inflammation associated with right-side heart failure. Herein, we explored the potential beneficial effects of treatment with siRNA AP-1 on pulmonary arterial hypertension (PAH), right ventricular dysfunction along with perivascular and interstitial fibrosis in pulmonary artery-PA, right ventricle-RV and lung in an experimental animal model of monocrotaline (MCT)-induced PAH. METHODS: Golden Syrian hamsters were divided into: (1) C group-healthy animals taken as control; (2) MCT group obtained by a single subcutaneous injection of 60 mg/kg MCT at the beginning of the experiment; (3) MCT-siRNA AP-1 group received a one-time subcutaneous dose of MCT and subcutaneous injections containing 100 nM siRNA AP-1, every two weeks. All animal groups received water and standard chow ad libitum for 12 weeks. RESULTS: In comparison with the MCT group, siRNA AP-1 treatment had significant beneficial effects on investigated tissues contributing to: (1) a reduction in TGF-ß1/ET-1/IL-1ß/TNF-α plasma concentrations; (2) a reduced level of cytosolic ROS production in PA, RV and lung and notable improvements regarding the ultrastructure of these tissues; a decrease of inflammatory and fibrotic marker expressions in PA (COL1A/Fibronectin/Vimentin/α-SMA/CTGF/Calponin/MMP-9), RV and lung (COL1A/CTGF/Fibronectin/α-SMA/F-actin/OB-cadherin) and an increase of endothelial marker expressions (CD31/VE-cadherin) in PA; (4) structural and functional recoveries of the PA [reduced Vel, restored vascular reactivity (NA contraction, ACh relaxation)] and RV (enlarged internal cavity diameter in diastole, increased TAPSE and PRVOFs) associated with a decrease in systolic and diastolic blood pressure, and heart rate; (5) a reduced protein expression profile of AP-1S3/ pFAK/FAK/pERK/ERK and a significant decrease in the expression levels of miRNA-145, miRNA-210, miRNA-21, and miRNA-214 along with an increase of miRNA-124 and miRNA-204. CONCLUSIONS: The siRNA AP-1-based therapy led to an improvement of pulmonary arterial and right ventricular function accompanied by a regression of perivascular and interstitial fibrosis in PA, RV and lung and a down-regulation of key inflammatory and fibrotic markers in MCT-treated hamsters.


Assuntos
MicroRNAs , Hipertensão Arterial Pulmonar , Ratos , Animais , Artéria Pulmonar/patologia , Fibronectinas , Fator de Transcrição AP-1/metabolismo , Ventrículos do Coração/patologia , RNA Interferente Pequeno/metabolismo , Ratos Sprague-Dawley , Hipertensão Arterial Pulmonar/patologia , Fibrose , MicroRNAs/metabolismo , Modelos Animais de Doenças
9.
Zhonghua Xin Xue Guan Bing Za Zhi ; 52(2): 185-190, 2024 Feb 24.
Artigo em Chinês | MEDLINE | ID: mdl-38326071

RESUMO

Objective: To investigate the influence of varied oxygen (O2) concentration environments on the phenotypic transformation of pulmonary artery smooth muscle cells (PASMC) and the mechanism of pulmonary hypertension. Methods: Primary rat PASMC were isolated and cultured through the process of enzymatic digestion. Following identification, the stable passaged PASMC were subjected to a 6-hour incubation in sealed containers with normal O2 content (group C) and relative O2 content comprising 55% (group H55), 75% (group H75), and 95% (group H95). mRNA and protein expression of α-Actin (α-SMA), smooth muscle 22α (SM22α), osteopontin (OPN), and matrix metalloproteinase-2 (MMP-2) were measured using real-time quantitative PCR and western blot analysis. Results: The H55 group displayed no significant difference from the C group in terms of mRNA and relative protein expression levels for α-SMA, SM22α, OPN, and MMP-2 (all P>0.05). On the other hand, groups H75 and H95 exhibited a reduction in mRNA and relative protein expression of α-SMA and SM22α, along with an increase in mRNA and relative protein expression of OPN and MMP-2 when compared with both the C and H55 groups (all P<0.05). The H95 group showed a higher relative mRNA expression of MMP-2 as compared to the H75 group (P<0.05). Conclusions: Oxygen concentration environments of 75% or higher can serve as the foundation for the pathogenesis of pulmonary hypertension, essentially by inducing a phenotypic transformation in PASMC towards adopting a robust secretory function. This induction is contingent upon the concentration of oxygen present.


Assuntos
Hiperóxia , Hipertensão Pulmonar , Ratos , Animais , Artéria Pulmonar/patologia , Metaloproteinase 2 da Matriz/genética , Hiperóxia/metabolismo , Hiperóxia/patologia , Actinas/genética , Actinas/metabolismo , Miócitos de Músculo Liso/metabolismo , Oxigênio/metabolismo , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Células Cultivadas
10.
Chin Med J (Engl) ; 137(7): 846-858, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38242702

RESUMO

BACKGROUND: Pulmonary arterial hypertension (PAH) is characterized by excessive proliferation of small pulmonary arterial vascular smooth muscle cells (PASMCs), endothelial dysfunction, and extracellular matrix remodeling. G protein-coupled receptor kinase 2 (GRK2) plays an important role in the maintenance of vascular tone and blood flow. However, the role of GRK2 in the pathogenesis of PAH is unknown. METHODS: GRK2 levels were detected in lung tissues from healthy people and PAH patients. C57BL/6 mice, vascular smooth muscle cell-specific Grk2 -knockout mice ( Grk2ΔSM22 ), and littermate controls ( Grk2flox/flox ) were grouped into control and hypoxia mice ( n  = 8). Pulmonary hypertension (PH) was induced by exposure to chronic hypoxia (10%) combined with injection of the SU5416 (cHx/SU). The expression levels of GRK2 and Yes-associated protein (YAP) in pulmonary arteries and PASMCs were detected by Western blotting and immunofluorescence staining. The mRNA expression levels of Grk2 and Yes-associated protein ( YAP ) in PASMCs were quantified with real-time polymerase chain reaction (RT-PCR). Wound-healing assay, 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide (MTT) assay, and 5-Ethynyl-2'-deoxyuridine (EdU) staining were performed to evaluate the proliferation and migration of PASMCs. Meanwhile, the interaction among proteins was detected by immunoprecipitation assays. RESULTS: The expression levels of GRK2 were upregulated in the pulmonary arteries of patients with PAH and the lungs of PH mice. Moreover, cHx/SU-induced PH was attenuated in Grk2ΔSM22 mice compared with littermate controls. The amelioration of PH in Grk2ΔSM22 mice was accompanied by reduced pulmonary vascular remodeling. In vitro study further confirmed that GRK2 knock-down significantly altered hypoxia-induced PASMCs proliferation and migration, whereas this effect was severely intensified by overexpression of GRK2 . We also identified that GRK2 promoted YAP expression and nuclear translocation in PASMCs, resulting in excessive PASMCs proliferation and migration. Furthermore, GRK2 is stabilized by inhibiting phosphorylating GRK2 on Tyr86 and subsequently activating ubiquitylation under hypoxic conditions. CONCLUSION: Our findings suggest that GRK2 plays a critical role in the pathogenesis of PAH, via regulating YAP expression and nuclear translocation. Therefore, GRK2 serves as a novel therapeutic target for PAH treatment.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Animais , Humanos , Camundongos , Proliferação de Células/genética , Células Cultivadas , Hipertensão Pulmonar/patologia , Hipóxia/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos de Músculo Liso/metabolismo , Artéria Pulmonar/patologia , Proteínas de Sinalização YAP
11.
J Appl Toxicol ; 44(3): 470-483, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37876240

RESUMO

Extensive, long-term exposure to cigarette smoke (CS) was recently suggested to be a risk factor for pulmonary hypertension, although further validation is required. The vascular effects of CS share similarities with the etiology of pulmonary hypertension, including vascular inflammation and remodeling. Thus, we examined the influence of CS exposure on the pathogenesis of monocrotaline (MCT)-induced pulmonary hypertension, hypothesizing that smoking might accelerate the development of primed pulmonary hypertension. CS was generated from 3R4F reference cigarettes, and rats were exposed to CS by inhalation at total particulate matter concentrations of 100-300 µg/L for 4 h/day, 7 days/week for 4 weeks. Following 1 week of initial exposure, rats received 60 mg/kg MCT and were sacrificed and analyzed after an additional 3 weeks of exposure. MCT induced hypertrophy in pulmonary arterioles and increased the Fulton index, a measure of right ventricular hypertrophy. Additional CS exposure exacerbated arteriolar hypertrophy but did not further elevate the Fulton index. No significant alterations were observed in levels of endothelin-1 and vascular endothelial growth factor, or in hematological and serum biochemical parameters. Short-term inhalation exposure to CS exacerbated arteriolar hypertrophy in the lung, although this effect did not directly aggravate the overworked heart under the current experimental conditions.


Assuntos
Fumar Cigarros , Hipertensão Pulmonar , Ratos , Animais , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/patologia , Monocrotalina/toxicidade , Monocrotalina/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Exposição por Inalação/efeitos adversos , Ratos Sprague-Dawley , Hipertrofia , Artéria Pulmonar/patologia
12.
Biol Res ; 56(1): 66, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38057829

RESUMO

BACKGROUND: Abnormal remodeling of the pulmonary vasculature, characterized by the proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs) along with dysregulated glycolysis, is a pathognomonic feature of pulmonary arterial hypertension (PAH). YULINK (MIOS, Entrez Gene: 54468), a newly identified gene, has been recently shown to possess pleiotropic physiologic functions. This study aims to determine novel roles of YULINK in the regulation of PAH-related pathogenesis, including PASMC migration, proliferation and glycolysis. RESULTS: Our results utilized two PAH-related cell models: PASMCs treated with platelet-derived growth factor (PDGF) and PASMCs harvested from monocrotaline (MCT)-induced PAH rats (PAH-PASMCs). YULINK modulation, either by knockdown or overexpression, was found to influence PASMC migration and proliferation in both models. Additionally, YULINK was implicated in glycolytic processes, impacting glucose uptake, glucose transporter 1 (GLUT1) expression, hexokinase II (HK-2) expression, and pyruvate production in PASMCs. Notably, YULINK and GLUT1 were observed to colocalize on PASMC membranes under PAH-related pathogenic conditions. Indeed, increased YULINK expression was also detected in the pulmonary artery of human PAH specimen. Furthermore, YULINK inhibition led to the suppression of platelet-derived growth factor receptor (PDGFR) and the phosphorylation of focal adhesion kinase (FAK), phosphoinositide 3-kinase (PI3K), and protein kinase B (AKT) in both cell models. These findings suggest that the effects of YULINK are potentially mediated through the PI3K-AKT signaling pathway. CONCLUSIONS: Our findings indicate that YULINK appears to play a crucial role in the migration, proliferation, and glycolysis in PASMCs and therefore positioning it as a novel promising therapeutic target for PAH.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Ratos , Humanos , Animais , Hipertensão Arterial Pulmonar/induzido quimicamente , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/patologia , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Proliferação de Células , Miócitos de Músculo Liso/metabolismo , Glicólise , Células Cultivadas
13.
Sci Rep ; 13(1): 22534, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110438

RESUMO

Pulmonary arterial hypertension (PAH) is characterized by endothelial cell (EC) dysfunction. There are no data from living patients to inform whether differential gene expression of pulmonary artery ECs (PAECs) can discern disease subtypes, progression and pathogenesis. We aimed to further validate our previously described method to propagate ECs from right heart catheter (RHC) balloon tips and to perform additional PAEC phenotyping. We performed bulk RNA sequencing of PAECs from RHC balloons. Using unsupervised dimensionality reduction and clustering we compared transcriptional signatures from PAH to controls and other forms of pulmonary hypertension. Select PAEC samples underwent single cell and population growth characterization and anoikis quantification. Fifty-four specimens were analyzed from 49 subjects. The transcriptome appeared stable over limited passages. Six genes involved in sex steroid signaling, metabolism, and oncogenesis were significantly upregulated in PAH subjects as compared to controls. Genes regulating BMP and Wnt signaling, oxidative stress and cellular metabolism were differentially expressed in PAH subjects. Changes in gene expression tracked with clinical events in PAH subjects with serial samples over time. Functional assays demonstrated enhanced replication competency and anoikis resistance. Our findings recapitulate fundamental biological processes of PAH and provide new evidence of a cancer-like phenotype in ECs from the central vasculature of PAH patients. This "cell biopsy" method may provide insight into patient and lung EC heterogeneity to advance precision medicine approaches in PAH.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Doenças Vasculares , Humanos , Hipertensão Pulmonar/patologia , Artéria Pulmonar/patologia , Células Endoteliais/metabolismo , Hipertensão Arterial Pulmonar/patologia , Hipertensão Pulmonar Primária Familiar/metabolismo , Doenças Vasculares/patologia , Via de Sinalização Wnt/genética
14.
Acta Med Okayama ; 77(6): 647-650, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38145939

RESUMO

A 67-year-old man was referred to our hospital for the diagnosis and treatment of prostate cancer. Multidisciplinary discussion led to intensity-modulated radiotherapy preceded by hormone therapy. Before radiotherapy, a biodegradable hydrogel spacer (HS) was placed between the prostate and rectum to reduce radiation injury risk. Three weeks postplacement, pelvic magnetic resonance imaging revealed HS migration into the pelvic vein. Subsequent whole-body contrast-enhanced computed tomography (CECT) revealed HS migration into the pulmonary artery. The patient showed no symptoms or clinical signs. Radiotherapy was completed uneventfully. Complete absorption of the migrated HS was confirmed using CECT images 5 months postplacement.


Assuntos
Hidrogéis , Neoplasias da Próstata , Masculino , Humanos , Idoso , Hidrogel de Polietilenoglicol-Dimetacrilato , Artéria Pulmonar/diagnóstico por imagem , Artéria Pulmonar/patologia , Próstata/patologia , Reto/patologia , Neoplasias da Próstata/patologia
15.
Int J Biol Sci ; 19(16): 5036-5054, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37928257

RESUMO

Pulmonary and systemic hypertension (PH, SH) are characterized by vasoconstriction and vascular remodeling resulting in increased vascular resistance and pulmonary/aortic artery pressures. The chronic stress leads to inflammation, oxidative stress, and infiltration by immune cells. Roles of metals in these diseases, particularly PH are largely unknown. This review first discusses the pathophysiology of PH including vascular oxidative stress, inflammation, and remodeling in PH; mitochondrial dysfunction and metabolic changes in PH; ion channel and its alterations in the pathogenesis of PH as well as PH-associated right ventricular (RV) remodeling and dysfunctions. This review then summarizes metal general features and essentiality for the cardiovascular system and effects of metals on systemic blood pressure. Lastly, this review explores non-essential and essential metals and potential roles of their dyshomeostasis in PH and RV dysfunction. Although it remains early to conclude the role of metals in the pathogenesis of PH, emerging direct and indirect evidence implicates the possible contributions of metal-mediated toxicities in the development of PH. Future research should focus on comprehensive clinical metallomics study in PH patients; mechanistic evaluations to elucidate roles of various metals in PH animal models; and novel therapy clinical trials targeting metals. These important discoveries will significantly advance our understandings of this rare yet fatal disease, PH.


Assuntos
Hipertensão Pulmonar , Hipertensão , Animais , Humanos , Hipertensão Pulmonar/metabolismo , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Pulmão/metabolismo , Inflamação/metabolismo , Remodelação Ventricular
16.
Eur J Pharmacol ; 960: 176169, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37925134

RESUMO

BACKGROUND: Pulmonary arterial hypertension (PAH) is a disease characterized by pulmonary vascular remodeling that triggers fibrosis and excessive myocardium apoptosis, ultimately facilitating atrial fibrillation (AF). In various rat models, Pinocembrin has anti-fibrotic and anti-apoptotic effects, reducing arrhythmia vulnerability. However, whether pinocembrin alleviates to AF in a PAH model remains unclear. The experiment aims to investigate how pinocembrin affects AF susceptibility in PAH rats and the possible mechanisms involved. METHODS: The PAH model was induced by monocrotaline (MCT; i. p. 60 mg/kg). Concurrently, rats received pinocembrin (i.p.50 mg/kg) or saline. Hemodynamics parameters, electrocardiogram parameters, lung H.E. staining, atrial electrophysiological parameters, histology, Western blot, and TUNEL assay were detected. RESULTS: Compared to the control rats, MCT-induced PAH rats possessed prominently enhancive mPAP (mean pulmonary artery pressure), pulmonary vascular remodeling, AF inducibility, HRV, right atrial myocardial fibrosis, apoptosis, atrial ERP, APD, and P-wave duration. Additionally, there were lowered protein levels of Cav1.2, Kv4.2, Kv4.3, and connexin 40 (CX40) in the MCT group in right atrial tissue. However, pinocembrin reversed the above pathologies and alleviated the activity of the Rho A/ROCKs signaling pathway, including the expression of Rho A, ROCK1, ROCK2, and its downstream MYPT-1, LIMK2, BCL-2, BAX, cleaved-caspase3 in right atrial and HL-1 cells. CONCLUSION: Present data exhibited pinocembrin attenuated atrial electrical, ion-channel, and autonomic remodeling, diminished myocardial fibrosis and apoptosis levels, thereby reducing susceptibility to AF in the MCT-induced PAH rats. Furthermore, we found that pinocembrin exerted inhibitory action on the Rho A/ROCK signaling pathway, which may be potentially associated with its anti-AF effects.


Assuntos
Fibrilação Atrial , Hipertensão Arterial Pulmonar , Ratos , Animais , Hipertensão Arterial Pulmonar/induzido quimicamente , Hipertensão Arterial Pulmonar/tratamento farmacológico , Hipertensão Arterial Pulmonar/patologia , Fibrilação Atrial/induzido quimicamente , Fibrilação Atrial/tratamento farmacológico , Fibrilação Atrial/patologia , Ratos Sprague-Dawley , Remodelação Vascular , Hipertensão Pulmonar Primária Familiar/patologia , Monocrotalina/farmacologia , Fibrose , Artéria Pulmonar/patologia , Modelos Animais de Doenças
17.
Front Immunol ; 14: 1254762, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37908354

RESUMO

Schistosomiasis-associated Pulmonary Arterial Hypertension (Sch-PAH) is a life-threatening complication of chronic S. mansoni infection that can lead to heart failure and death. During PAH, the expansion of apoptosis-resistant endothelial cells (ECs) has been extensively reported; however, therapeutic approaches to prevent the progression or reversal of this pathological phenotype remain clinically challenging. Previously, we showed that depletion of the anti-apoptotic protein Caveolin-1 (Cav-1) by shedding extracellular vesicles contributes to shifting endoprotective bone morphogenetic protein receptor 2 (BMPR2) towards transforming growth factor beta (TGF-ß)-mediated survival of an abnormal EC phenotype. However, the mechanism underlying the reduced endoprotection in PAH remains unclear. Interestingly, recent findings indicate that, similar to the gut, healthy human lungs are populated by diverse microbiota, and their composition depends significantly on intrinsic and extrinsic host factors, including infection. Despite the current knowledge that the disruption of the gut microbiome contributes to the development of PAH, the role of the lung microbiome remains unclear. Thus, using a preclinical animal model of Sch-PAH, we tested whether S. mansoni infection alters the gut-lung microbiome composition and causes EC injury, initiating the expansion of an abnormal EC phenotype observed in PAH. Indeed, in vivo stimulation with S. mansoni eggs significantly altered the gut-lung microbiome profile, in addition to promoting injury to the lung vasculature, characterized by increased apoptotic markers and loss of endoprotective expression of lung Cav-1 and BMPR2. Moreover, S. mansoni egg stimulus induced severe pulmonary vascular remodeling, leading to elevated right ventricular systolic pressure and hypertrophy, characteristic of PAH. In vitro, exposure to the immunodominant S. mansoni egg antigen p40 activated TLR4/CD14-mediated transient phosphorylation of Cav-1 at Tyr14 in human lung microvascular EC (HMVEC-L), culminating in a mild reduction of Cav-1 expression, but failed to promote death and shedding of extracellular vesicles observed in vivo. Altogether, these data suggest that disruption of the host-associated gut-lung microbiota may be essential for the emergence and expansion of the abnormal lung endothelial phenotype observed in PAH, in addition to S. mansoni eggs and antigens.


Assuntos
Microbioma Gastrointestinal , Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Esquistossomose , Animais , Camundongos , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Caveolina 1/genética , Células Endoteliais/metabolismo , Hipertensão Pulmonar/etiologia , Pulmão/patologia , Hipertensão Arterial Pulmonar/etiologia , Hipertensão Arterial Pulmonar/patologia , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Esquistossomose/metabolismo
18.
Respir Res ; 24(1): 289, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978368

RESUMO

BACKGROUND: Pulmonary arterial hypertension (PAH) is a progressive and devastating disease characterized by pulmonary vascular remodeling which is associated with the malignant phenotypes of pulmonary vascular cells. Recently, the effects of heat shock protein 110 (Hsp110) in human arterial smooth muscle cells were reported. However, the underlying roles and mechanisms of Hsp110 in human pulmonary arterial endothelial cells (HPAECs) that was disordered firstly at the early stage of PAH remain unknown. METHODS: In this research, the expression of Hsp110 in PAH human patients and rat models was investigated, and the Hsp110 localization was determined both in vivo and in vitro. The roles and mechanism of elevated Hsp110 in excessive cell proliferation and migration of HPAECs were assessed respectively exposed to hypoxia. Small molecule inhibitors targeting Hsp110-STAT3 interaction were screened via fluorescence polarization, anti-aggregation and western blot assays. Moreover, the effects of compound 6 on HPAECs abnormal phenotypes in vitro and pulmonary vascular remodeling of hypoxia-indued PAH rats in vivo by interrupting Hsp110-STAT3 interaction were evaluated. RESULTS: Our studies demonstrated that Hsp110 expression was increased in the serum of patients with PAH, as well as in the lungs and pulmonary arteries of PAH rats, when compared to their respective healthy subjects. Moreover, Hsp110 levels were significantly elevated in HPAECs under hypoxia and mediated its aberrant phenotypes. Furthermore, boosted Hsp110-STAT3 interaction resulted in abnormal proliferation and migration via elevating p-STAT3 and c-Myc in HPAECs. Notably, we successfully identified compound 6 as potent Hsp110-STAT3 interaction inhibitor, which effectively inhibited HPAECs proliferation and migration, and significantly ameliorated right heart hypertrophy and vascular remodeling of rats with PAH. CONCLUSIONS: Our studies suggest that elevated Hsp110 plays a vital role in HPAECs and inhibition of the Hsp110-STAT3 interaction is a novel strategy for improving vascular remodeling. In addition, compound 6 could serve as a promising lead compound for developing first-in-class drugs against PAH.


Assuntos
Hipertensão Arterial Pulmonar , Humanos , Ratos , Animais , Hipertensão Arterial Pulmonar/metabolismo , Proteínas de Choque Térmico HSP110/metabolismo , Remodelação Vascular , Células Endoteliais/metabolismo , Hipertensão Pulmonar Primária Familiar , Artéria Pulmonar/patologia , Hipóxia/metabolismo , Miócitos de Músculo Liso/metabolismo , Proliferação de Células , Fator de Transcrição STAT3/metabolismo
19.
J Transl Med ; 21(1): 821, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978515

RESUMO

BACKGROUND: Pulmonary hypertension (PH), an infrequent disease, is characterized by excessive pulmonary vascular remodeling and proliferation of pulmonary artery smooth muscle cells (PASMCs). However, its underlying molecular mechanisms remain unclear. Uncovering its molecular mechanisms will be beneficial to the treatment of PH. METHODS: Differently expressed genes (DEGs) in the lung tissues of PH patients were analyzed with a GEO dataset GSE113439. From these DEGs, we focused on TRIM59 which was highly expressed in PH patients. Subsequently, the expression of TRIM59 in the pulmonary arteries of PH patients, lung tissues of PH rat model and PASMCs cultured in a hypoxic condition was verified by quantitative real-time PCR (qPCR), western blot and immunohistochemistry. Furthermore, the role of TRIM59 in PAMSC proliferation and pathological changes in PH rats was assessed via gain-of-function and loss-of-function experiments. In addition, the transcriptional regulation of YAP1/TEAD4 on TRIM59 was confirmed by qPCR, western blot, luciferase reporter assay, ChIP and DNA pull-down. In order to uncover the underlying mechanisms of TRIM59, a protein ubiquitomics and a CoIP- HPLC-MS/MS were companied to identify the direct targets of TRIM59. RESULTS: TRIM59 was highly expressed in the pulmonary arteries of PH patients and lung tissues of PH rats. Over-expression of TRIM59 accelerated the proliferation of PASMCs, while TRIM59 silencing resulted in the opposite results. Moreover, TRIM59 silencing mitigated the injuries in heart and lung and attenuated pulmonary vascular remodeling during PH. In addition, its transcription was positively regulated by YAP1/TEAD4. Then we further explored the underlying mechanisms of TRIM59 and found that TRIM59 overexpression resulted in an altered ubiquitylation of proteins. Accompanied with the results of CoIP- HPLC-MS/MS, 34 proteins were identified as the direct targets of TRIM59. CONCLUSION: TRIM59 was highly expressed in PH patients and promoted the proliferation of PASMCs and pulmonary vascular remodeling, thus contributing to the pathogenesis of PH. It is indicated that TRIM59 may become a potential target for PH treatment.


Assuntos
Hipertensão Pulmonar , Humanos , Ratos , Animais , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/patologia , Remodelação Vascular/genética , Espectrometria de Massas em Tandem , Transdução de Sinais , Proliferação de Células/genética , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Hipóxia/patologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ubiquitinação , Miócitos de Músculo Liso/metabolismo , Células Cultivadas , Fatores de Transcrição de Domínio TEA , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo
20.
Eur J Pharmacol ; 961: 176123, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37926274

RESUMO

The pathological feature of hypoxic pulmonary hypertension (PH) is pulmonary vascular remodeling (PVR), primarily attributed to the hyperproliferation and apoptosis resistance of pulmonary artery smooth muscle cells (PASMCs). Existing PH-targeted drugs have difficulties in reversing PVR. Therefore, it is vital to discover a new regulatory mechanism for PVR and develop new targeted drugs. G protein-coupled receptor 146 (GPR146) is believed to participate in this process. This study aimed to investigate the role of GPR146 in PASMCs during PH. We investigated the role of GPR146 in PVR and its underlying mechanism using hypoxic PASMCs and mouse model (Sugen 5416 (20 mg/kg)/hypoxia). In our recent study, we have observed a significant increase in the expression of GPR146 protein in animal models of PH as well as in patients diagnosed with pulmonary arterial hypertension (PAH). Through immunohistochemistry, we found that GPR146 was mainly localized in the smooth muscle and endothelial layers of the pulmonary vasculature. GPR146 deficiency induction exhibited protective effects against hypoxia-induced elevation of right ventricular systolic blood pressure (RVSP), right ventricular hypertrophy, and pulmonary vascular remodeling in mice. In particular, the deletion of GPR146 attenuated the hypoxia-triggered proliferation of PASMCs. Furthermore, 5-lipoxygenase (5-LO) was related to PH development. Hypoxia and overexpression of GPR146 increased 5-LO expression, which was reversed through GPR146 knockdown or siRNA intervention. Our study discovered that GPR146 exhibited high expression in the pulmonary vessels of pulmonary hypertension. Subsequent research revealed that GPR146 played a crucial role in the development of hypoxic PH by promoting lipid peroxidation and 5-LO expression. In conclusion, GPR146 may regulate pulmonary vascular remodeling by promoting PASMCs proliferation through 5-LO, which presents a feasible target for PH prevention and treatment.


Assuntos
Hipertensão Pulmonar , Artéria Pulmonar , Humanos , Camundongos , Animais , Artéria Pulmonar/patologia , Hipertensão Pulmonar/patologia , Remodelação Vascular , Araquidonato 5-Lipoxigenase/metabolismo , Proliferação de Células/fisiologia , Hipóxia/metabolismo , Miócitos de Músculo Liso , Músculo Liso Vascular , Células Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...